
A systematic approach to Lyapunov analyses of continuous-time
models in convex optimization versions

Céline Moucer

PEP Talks, February 2023



Joint work with

Adrien Taylor Francis Bach

PEP Talks, February 2023 2/30



Introduction

1 Introduction

2 Analysis of the gradient flow

3 Optimizing over a family of quadratic Lyapunov functions

4 Higher-order gradient flows

5 SDEs for SGD modeling

PEP Talks, February 2023 3/30



Introduction

Motivations

• A principled approach to worst-case analysis to continuous-time limit of optimization
methods

• A tool for constructing suitable Lyapunov functions for ODEs and SDEs
• A simple insight to what can be expected from (stochastic) optimization methods
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Introduction

First-order methods in convex optimization
A very popular setting:

f(x⋆) = min
x∈Rd

f(x),

where f is convex, differentiable, and x⋆ ∈ Rd an optimal point.
• First-order methods: low-cost per iteration, accuracy is not critical (machine

learning, signal processing, etc.)
xk+1 ∈ Span(x0,∇f(x0), ...,∇f(xk+1))

Figure: Convex function and optimization algorithm
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Introduction

First-order methods in convex optimization
Gradient descent with fixed step size γ > 0:

xk+1 = xk − γ∇f(xk).

• Ordinary differential equations (ODEs): When taking the step size γ to 0, it is
directly related to the gradient flow,

Ẋt = −∇f(Xt), X0 = x0 ∈ Rd,

where Xt verifies Xtk ≈ xk with the identification tk = γk.

Figure: Integration of the gradient flow for a logistic regression problem.
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Introduction

Optimization methods and ODEs: convergence guarantees
• First-order methods: given a class of functions F , a starting point x0 ∈ Rd, and

given gradient descent with step size γ > 0

xk+1 = xk − γ∇f(xk),

the goal is to quantify the convergence speed to an optimum x⋆ in a small number of
steps k,

∥xk − x⋆∥2 ⩽ τ(k,F , γ)∥x0 − x⋆∥2.

• ODEs : given a class of function F , a starting point x0 ∈ Rd, the gradient flow
starting is given by,

d
dtXt = −∇f(Xt),

the goal is to quantify the convergence speed to an x⋆,

∥Xt − x⋆∥2 ⩽ τ(t,F)∥x0 − x⋆∥2.
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Introduction

Convex optimization setting

Common assumptions:
• f is convex and differentiable,
• A differentiable function f is L-smooth if and only if it satisfies

∥∇f(x)−∇f(y)∥ ⩽ L∥x − y∥.

• A convex differentiable function f is µ-strongly convex if and only if it satisfies

∥∇f(x)−∇f(y)∥ ⩾ µ∥x − y∥.

Fµ,L is the family of a L-smooth µ-strongly convex functions, with 0 ≤ µ ≤ L ≤ +∞.
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Analysis of the gradient flow

Performance estimation problems (PEPs)

Main ideas:
1 Optimization methods and associated ODEs are usually studied via worst-case

analyses.
2 Convergence proofs are combinations of inequalities (from methods and problem

class).
3 Automated search for combinations of inequalities.

References:
• Initiated by Drori and Teboulle (2012) [2]
• Analyses of first-order methods and design of proofs by Taylor et al. (2017) [10]

PEP Talks, February 2023 10/30



Analysis of the gradient flow

An example: the gradient flow

We consider the gradient flow starting from x0 ∈ Rd, and originating from differentiable
functions f:

d
dtXt = −∇f(Xt).

Lyapunov functions: given a trajectory Xt, many proofs construct a Lyapunov function
V : x, t ∈ Rd,R+ → R, such that,

1 V(x, t) = 0 ⇐⇒ x = x⋆,
2 V(Xt, t) ⩾ 0,
3 d

dtV(Xt, t) ⩽ 0.

For example, let us consider the function V(Xt, t) = f(Xt):

d
dtV(Xt, t) = Ẋt

T∇f(Xt) = −∥∇f(Xt))∥2 ⩽ 0.
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Analysis of the gradient flow

Worst-case guarantee using Lyapunov functions
We consider the gradient flow starting from x0 ∈ Rd, and originating from strongly
convex functions f ∈ Fµ,∞:

d
dtXt = −∇f(Xt).

Worst-case guarantee: given a Lyapunov function V, we look for (the largest) values
τ(µ) ⩾ 0 such that

d
dtV(Xt) ⩽ −τ(µ)V(Xt),

is true for all functions f ∈ Fµ,∞, and all trajectories Xt.

Integrating between 0 and t: V(Xt) ⩽ e−τ(µ)tV(x0).

Reformulation as an optimization problem:

−τ(µ) = max
Xt∈Rd, f∈Fµ,∞

d
dtV(Xt),

subject to V(Xt) = 1,
Ẋt = −∇f(Xt).
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Analysis of the gradient flow

Worst-case guarantee using Lyapunov functions

We consider the gradient flow starting from x0 ∈ Rd, and originating from strongly
convex functions f ∈ Fµ,∞:

d
dtXt = −∇f(Xt).

Given the Lyapunov function V(Xt) = f(Xt)− f⋆,

−τ(µ) = max
Xt, f∈Fµ,∞

Ẋt
T∇f(Xt),

subject to f(Xt)− f⋆ = 1,
Ẋt = −∇f(Xt).

This infinite dimensional problem can be reformulated as an SDP.
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Analysis of the gradient flow

A reformulation into an SDP

Formulation into an SDP,

max
G⪰0,F

Tr(A0G),

subject to bT
0 F = 1,

bT
1 F + Tr(A1G) ⩾ 0,

bT
2 F + Tr(A2G) ⩾ 0,

where A0 =

(
0 0
0 −1

)
, A1 =

(
−µ/2 1/2
1/2 0

)
, A2 =

(
−µ/2 0

0 0

)
, b1 = −1 and b2 = b0 = 1,

and F = ft − f⋆, G =

(
∥Xt − x⋆∥2 ⟨Xt − x⋆, gt⟩
⟨Xt − x⋆, gt⟩ ∥gt∥2

)
⪰ 0 is a Gram matrix.

Linear SDP → can be solved numerically.
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Optimizing over a family of quadratic Lyapunov functions
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Optimizing over a family of quadratic Lyapunov functions

Generalization to a family of Lyapunov functions

Given the gradient flow, it is reasonable to search for quadratic Lyapunov functions,
for a, c ⩾ 0:

Va,c(Xt) = a · (f(Xt)− f⋆) + c · ∥Xt − x⋆∥2.

Goal: verifying that the inequality d
dtVa,c(Xt) ⩽ −τVa,c(Xt), is satisfied for all d ∈ N, for

all f ∈ Fµ,∞ and all Xt solutions to the gradient flow.

It is equivalent with the existence of λ1, λ2 ⩾ 0 such that:

S =

(
τc − µ

2 (λ1 + λ2) −c + λ1
2

−c + λ1
2 −a

)
≼ 0, τa = λ1 − λ2.

This is a Linear Matrix Inequality (LMI), that allows to verify a Lyapunov
function.
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Optimizing over a family of quadratic Lyapunov functions

Numerical VS known bounds

A numerical bound:
The LMI is jointly convex in λ1, λ2, a, c and linear in τ . A bisection search allows to
optimize over τ and a, c at the same time.

A closed-form upper bound in the worst-case:

Lemma
Let f be a µ-strongly convex function, x0 ∈ Rd, and x⋆ the minimizer of f. The solution Xt
to the gradient flow verifies

d
dt (f(Xt)− f(x⋆)) ⩽ −2µ (f(Xt)− f(x⋆)) ,

and after integrating between 0 and t, f(Xt)− f(x⋆) ⩽ e−2µt(f(x0)− f(x⋆)).
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Optimizing over a family of quadratic Lyapunov functions

Numerical VS known upper bound: gradient flow
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Optimizing over a family of quadratic Lyapunov functions

Gradient flow originating from convex functions

Let Xt be the gradient flow starting from x0 ∈ Rd, and originating from convex
functions f ∈ F0,∞, worst-case convergence guarantees are often sublinear. Typically:

f(Xt)− f⋆ ⩽
∥x0 − x⋆∥2

2t .

A corresponding Lyapunov function is given by:

V(Xt, t) = t(f(Xt)− f⋆) +
1
2∥Xt − x⋆∥2.

proof : d
dtV(Xt, t) = t⟨∇f(Xt), Ẋt⟩+ f(Xt)− f⋆ + ⟨Ẋt,Xt − x⋆⟩ =

−t∥∇f(Xt)∥2 + f(Xt)− f⋆ − ⟨∇f(Xt),Xt − x⋆⟩ ⩽ −t∥∇f(Xt)∥2 ⩽ 0, using convexity.
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−t∥∇f(Xt)∥2 + f(Xt)− f⋆ − ⟨∇f(Xt),Xt − x⋆⟩ ⩽ −t∥∇f(Xt)∥2 ⩽ 0, using convexity.

PEP Talks, February 2023 19/30



Optimizing over a family of quadratic Lyapunov functions

A time-dependent Lyapunov function
Let us adapt the techniques by considering quadratic Lyapunov functions:

Vat,ct(Xt, t) = at(f(Xt)− f⋆) + ct∥Xt − x⋆∥2,

where ct, at ⩾ 0 are functions differentiable with respect to time such that the function
Vat,ct verifies:
• Vat,ct(Xt, t) ⩾ 0,
• d

dtVat,ct(Xt, t) ⩽ 0.

After integrating between 0 and t, a convergence guarantee in function values is given by

f(Xt)− f⋆ ⩽
Va0,c0(x0, 0)

at
=

a0(f(x0)− f⋆) + c0∥x0 − x⋆∥2

at
.

Remark
The strongly convex case as defined above is a particular case of the convex
one, using a specific Lyapunov function Φ(·), such that V(Xt, t) = eτ tΦ(Xt). Then,

d
dtV(Xt, t) ⩽ 0 ⇐⇒ d

dtΦ(Xt) ⩽ −τΦ(Xt).
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Optimizing over a family of quadratic Lyapunov functions

A differential LMI

Verifying that the inequality d
dtVat,ct(Xt, t) ⩽ 0, is satisfied for all d ∈ N, all f ∈ F0,∞ and

all Xt generated by the gradient flow, is equivalent with the existence of λ
(1)
t , λ

(2)
t ⩾ 0

such that:

S =

 ċt −ct +
λ
(1)
t
2

−ct +
λ
(1)
t
2 −at

 ≼ 0, ȧt = λ
(1)
t − λ

(2)
t .

• Choosing λ
(1)
t = 1, λ(2)

t = 0, together with ct =
1
2 and at = t,

V(x, t) = t(f(x)− f⋆) + 1
2∥x − x⋆∥2 is a feasible point of the LMI.

• A problem that is jointly convex in λ
(1)
t , λ(2)

t , ct, at, ȧt, ċt, allowing numerical
verification1.

1see implementation in PEPit [3]
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Higher-order gradient flows

Accelerated methods and higher-order gradient flows
An accelerated gradient method 2,

xk+1 = yk − γ∇f(yk),

yk+1 = xk+1 + αk(xk+1 − xk),

where γ, αk ⩾ 0 depend on the class of functions to minimize.
This method happens to be closely related to
• Polyak damped oscillator 3(strongly convex functions)

Ẍt + 2√µẊ +∇f(Xt) = 0, (conv. in O(e−
√
µt)),

• Nesterov’s accelerated gradient flow 4 (convex functions)

Ẍt +
3
t Ẋ +∇f(Xt) = 0, (conv. in O(

1
t2 )).

2Nesterov, [5]
3introduced by Polyak in [6]
4see Su et al. [9, Theorem 3]
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Higher-order gradient flows

Higher-order and non-autonomous gradient flows

More generally, we study non-autonomous second-order gradient flows, for βt ⩾ 0:

Ẍt + βtẊ +∇f(Xt) = 0,

with a family of quadratic Lyapunov functions, where at,Pt are differentiable functions:

Vat,Pt(Xt, t) = at(f(Xt)− f⋆) +
(

Xt − X⋆

Ẋt

)⊤
(Pt ⊗ Id)

(
Xt − X⋆

Ẋt

)
.

After integration between 0 and t, it leads to a convergence guarantee in function values

f(Xt)− f⋆ ⩽
V(x0)

at
.
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Higher-order gradient flows

Polyak’s damped oscillator
Let f ∈ Fµ,∞. Given the Polyak damped oscillator

Ẍt + 2√µẊ +∇f(Xt) = 0,

Verifying that the inequality d
dtVa,P(Xt) ⩽ −τVa,P(Xt), is satisfied for all d ∈ N, all

f ∈ Fµ,∞ and all Xt is equivalent with the existence of λ1, λ2, ν1, ν2 ⩾ 0 such that−µ
2 (λ1 + λ2) + τp11 p11 − 2√µp12 + τp12 −p12 +

λ1
2

p11 − 2√µp12 + τp12 2(p12 − 2√µp22) + τp22 −p22 +
a
2

−p12 +
λ1
2 −p22 +

a
2 0

 ≼ 0,

τa = λ1 − λ2,

(
P 0
0 0

)
+

µ
2 (ν1 + ν2) 0 −ν1

2
0 0 0

−ν1
2 0 0

 ≽ 0,

a = ν2 − ν1.

Usually, Lyapunov functions are defined for P ≽ 0 so that Va,P(x) ⩾ 0, which is here
replaced with a relaxed nonnegativity condition Va,P(Xt) ⩾ 0.
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Ẍt + 2√µẊ +∇f(Xt) = 0,

Verifying that the inequality d
dtVa,P(Xt) ⩽ −τVa,P(Xt), is satisfied for all d ∈ N, all

f ∈ Fµ,∞ and all Xt is equivalent with the existence of λ1, λ2, ν1, ν2 ⩾ 0 such that−µ
2 (λ1 + λ2) + τp11 p11 − 2√µp12 + τp12 −p12 +

λ1
2

p11 − 2√µp12 + τp12 2(p12 − 2√µp22) + τp22 −p22 +
a
2

−p12 +
λ1
2 −p22 +

a
2 0

 ≼ 0,

τa = λ1 − λ2,(
P 0
0 0

)
+

µ
2 (ν1 + ν2) 0 −ν1

2
0 0 0

−ν1
2 0 0

 ≽ 0,

a = ν2 − ν1.

Usually, Lyapunov functions are defined for P ≽ 0 so that Va,P(x) ⩾ 0, which is here
replaced with a relaxed nonnegativity condition Va,P(Xt) ⩾ 0.
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Higher-order gradient flows

Numerical help for computing Lyapunov parameters
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(a) Best guarantees found within the class of
quadratic Lyapunov functions.
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(b) Lyapunov parameters P for τ = 4/3√µ and
a = 1, as a function of the condition number µ.
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Higher-order gradient flows

An improved convergence guarantee for the Polyak’s damped
oscillator

A classical Lyapunov function is given by5

V(Xt) = f(Xt)− f⋆ +
1
2

(
Xt − X⋆

Ẋt

)⊤((
µ

√
µ√

µ 1

)
⊗ Id

)(
Xt − X⋆

Ẋt

)
,

that verifies d
dtV(Xt) ⩽ −√

µV(Xt) for all dimension d ∈ N, all function f ∈ Fµ,∞, and all
trajectory Xt generated by the Polyak damped oscillator.

5see [8, Theorem 4.3], [7]
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Higher-order gradient flows

An improved convergence guarantee for the Polyak’s damped
oscillator

Using this framework, we show the function

V(Xt) = f(Xt)− f⋆ +
(

Xt − X⋆

Ẋt

)⊤(( 4/9µ 2/3√µ
2/3√µ 1/2

)
⊗ Id

)(
Xt − X⋆

Ẋt

)
,

verifies d
dtV(Xt) ⩽ −4/3√µV(Xt) for all dimension d ∈ N, all function f ∈ Fµ,∞, and all

trajectory Xt generated by the Polyak damped oscillator.
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SDEs for SGD modeling

1 Introduction

2 Analysis of the gradient flow

3 Optimizing over a family of quadratic Lyapunov functions

4 Higher-order gradient flows

5 SDEs for SGD modeling
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A connection between SDEs and SGD
Stochastic gradient descent (SGD) is given by:

xk+1 = xk − hk∇f̃(xk, ξik),

where hk > 0 is the step size, ξik are uniformly drawn in (ξ1, ..., ξn), and where ∇f̃(xk, ξik)
is an unbiased estimate of full gradient ∇f(xk).

A connection to stochastic differential equation (SDEs) was proven by Li et al. [4]:

dXt = −ht∇f(Xt)dt + ht(γΣ(Xt))
1/2dBt,

where Bt is a standard Brownian motion, ht the step size and Σt is a stochastic covariance
matrix.

Lemma (Ito’s Lemma)
Let g be a twice continuously differentiable function, and Xt be a stochastic process
solution to the SDE (29), then

dg(Xt, t) =
∂

∂tg(Xt, t)dt + ∂

∂xg(Xt, t)dXt +
1
2γTr( ∂

2

∂x2 g(Xt, t)Σ(Xt))dt.
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Lyapunov functions from deterministic setting?

Let f ∈ F0,∞ be convex and twice differentiable, Xt be generated by the SDE above for
ht = 1, and consider the Lyapunov approach from the deterministic setting for the
gradient flow:

V(x, t) = t(f(x)− f⋆) +
1
2∥x − x⋆∥2.

Ito’s formula and convexity lead to:

d
dtEV(Xt, t) ⩽ −tE∥∇f(Xt)∥2 + E1

2Tr((t∇2
xf(Xt) + I)Σ(Xt))

After integrating between 0 and t, assuming f to be L-smooth and Σt ≼ Σ,

E[f(Xt)− f⋆] ⩽
∥x0 − x⋆∥2

2t +
1
2(L

t
2 + 1)Tr(Σ).



Diminishing step sizes is the key to succes

Corollary
Let f ∈ F0,∞ be a twice continuously differentiable function, and Xt ∈ Rd be generated by
the SDE. The quadratic function

V(Xt, t) = a(1)t (f(Xt)− f⋆) +
1
2∥Xt − x⋆∥2,

with ȧ(1)t = 2ht verifies d
dtE[V(Xt, t)] ⩽ h2

t ETr((∇2
xxf(Xt)a(1)t +

1
2Id)Σ(Xt)).

Furthermore, it holds that:

E[f(Xt)− f⋆] ⩽
∥x0 − x⋆∥2

a(1)t
+

γ

2a(1)t

∫ t

0
h2

sETr((∇2
xxf(Xs)a(1)s +

1
2Id)Σ(Xs))ds.

• A term that forgets the initial conditions
• A variance term due to noise



Choosing the best step size

Let the step size be defined for α ⩾ 0:

ht =
1

(t + 1)α .

Then, assuming bounded covariance and smoothness of f, the term E[f(Xt)− f⋆] is
• bounded by O( 1

t2α−1 ) if α ∈ (1/2, 2/3),
• bounded by O( 1

t1−α ) if α ∈ (2/3, 1)
• unbounded otherwise.

The convergence regime changes at α = 2
3 with a global convergence rate in O( 1

t1/3 ), as for
SGD 6, but using simpler formulations and fewer assumptions.

6see Bach and Moulines [1, Theorem 3]



Extensions

Other techniques were developed to improve convergence, and can be handled using this
framework, such as:
• Polyak-Ruppert averaging

x̄k =
1
k

k∑
i=1

xi.

• Non-uniform averaging
• Higher-order stochastic differential equations

d2Xt + βtdXt + ht∇f(Xt)dt + ht
√
γΣ(Xt)dBt = 0.



SDEs for SGD modeling

Concluding remarks

Conclusion:
• Verifying a Lyapunov function can be cast as the feasibility of a small-sized LMI
• A systematic approach to finding quadratic Lyapunov functions for families of ODEs
• May be extended in the stochastic setting for SDEs
• Similar guarantees to the discrete setting requiring less assumptions on the problem

classes, and shorter proofs

Future work:
• Extension of the family of quadratic Lyapunov functions
• Analyzing differential and monotone inclusion problems
• Analyzing higher order methods and assumptions (already implied by the variance

term in the stochastic setting)
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A systematic approach to Lyapunov analyses of continuous-time
models in convex optimization versions

Céline Moucer
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SDEs for SGD modeling
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